J.-A. Mejía-de-Dios and E. Mezura-Montes. A New Evolutionary Optimization Method Based on Center of Mass. In: Decision Science in Action: Theory and Applications of Modern Decision Analytic Optimisation, editors, Kusum Deep, Madhu Jain and Said Salhi, 65–74. Springer Singapore, Singapore (2019).
J. Kennedy and R. Eberhart. Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks, 1942–1948 (1995).
D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization 39, 459–471 (2007).
H. Li and Q. Zhang. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE transactions on evolutionary computation 13, 284–302 (2008).
S. Mirjalili and A. H. Gandomi. Chaotic gravitational constants for the gravitational search algorithm. Applied soft computing 53, 407–419 (2017).
P. J. Van L. and E. Aarts. Simulated annealing. In: Simulated annealing: Theory and applications, editors, 7–15. Springer (1987).
S. Mirjalili and A. Lewis. The whale optimization algorithm. Advances in engineering software 95, 51–67 (2016).
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation 6, 182–197 (2002).
K. Deb and H. Jain. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 18, 577-601 (2014).
E. Zitzler, M. Laumanns and L. Thiele. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 103 (2001).
M. H. Satman and E. Akadal. Machine Coded Compact Genetic Algorithms for Real Parameter Optimization Problems. Alphanumeric Journal 8, 43–58 (2020).
Y. Tian, T. Zhang, J. Xiao, X. Zhang and Y. Jin. A Coevolutionary Framework for Constrained Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation 25, 102-116 (2021).
T. Takahama and S. Sakai. Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites. In: 2006 IEEE International Conference on Evolutionary Computation, 1-8 (2006).
E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca and V. da Fonseca. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7, 117-132 (2003).
S. de-la-Cruz-Martínez, J. Mejía-de-Dios and M.-M. E. Efficient Archiving Method for Handling Preferences in Constrained Multiobjective Evolutionary Optimization. Handbook on Decision Making: Trends and Challenges in Intelligent Decision Support Systems, 1–30, Springer-Verlag (2022).