References

MejiaMezura2019
J.-A. Mejía-de-Dios, E. Mezura-Montes, A New Evolutionary Optimization Method Based on Center of Mass, In Decision Science in Action: Theory and Applications of Modern Decision Analytic Optimisation, editors, Kusum Deep, Madhu Jain, Said Salhi, 65–74. Springer Singapore, Singapore, 2019.
Price2013
K. V. Price, Differential Evolution, Handbook of Optimization: From Classical to Modern Approach, 187–214, Springer Berlin Heidelberg, Berlin, Heidelberg.
KennedyEberhart1995
J. Kennedy, R. Eberhart, Particle swarm optimization, In Proceedings of ICNN'95-international conference on neural networks, 1942–1948, 1995.
KarabogaBasturk2007
D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of global optimization, 39(3), 459–471, 2007.
LiZhang2008
H. Li, Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE transactions on evolutionary computation, 13(2), 284–302, 2008.
MirjaliliGandomi2017
S. Mirjalili, A. H. Gandomi, Chaotic gravitational constants for the gravitational search algorithm, Applied soft computing, 53, 407–419, 2017.
Van1987
Peter J.M. Van L., E.H.L. Aarts, Simulated annealing, In Simulated annealing: Theory and applications, editors, 7–15. Springer, 1987.
MirjaliliLewis2016
S. Mirjalili, A. Lewis, The whale optimization algorithm, Advances in engineering software, 95, 51–67, 2016.
Deb2002
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, 6(2), 182–197, 2002.
DebJain2014
Emmerich2005
Michael Emmerich, Nicola Beume, Boris Naujoks, An EMO Algorithm Using the Hypervolume Measure as Selection Criterion, In Lecture Notes in Computer Science, editors, 62–76. Springer Berlin Heidelberg, 2005.