API references

Built-in Samplers

SearchSpaces.GridSamplerType
GridSampler(searchspace; npartitions)

Return an iterator over the given searchspace.

The npartitions controls the number of partitions for each axis when searchspace isa BoxConstrainedSpace (3 by default).

Examples

julia> for x in GridSampler(PermutationSpace([:red, :green, :blue]))
           @show x
       end
x = [:red, :green, :blue]
x = [:red, :blue, :green]
x = [:green, :red, :blue]
x = [:green, :blue, :red]
x = [:blue, :red, :green]
x = [:blue, :green, :red]

julia> for x in GridSampler(BoxConstrainedSpace(lb=[-1.0, -1], ub=[1, 0.0]), npartitions=3)
           @show x
       end
x = [-1.0, -1.0]
x = [0.0, -1.0]
x = [1.0, -1.0]
x = [-1.0, -0.5]
x = [0.0, -0.5]
x = [1.0, -0.5]
x = [-1.0, 0.0]
x = [0.0, 0.0]
x = [1.0, 0.0]

julia> mixed = MixedSpace(
                                 :W => CategorySpace([:red, :green, :blue]),
                                 :X => PermutationSpace(2),
                                 :Y => BitArrays(2),
                                );

julia> collect(GridSampler(mixed))
24-element Vector{Any}:
 Dict{Symbol, Any}(:W => :red, :X => [1, 2], :Y => Bool[0, 0])
 Dict{Symbol, Any}(:W => :green, :X => [1, 2], :Y => Bool[0, 0])
 Dict{Symbol, Any}(:W => :blue, :X => [1, 2], :Y => Bool[0, 0])
 Dict{Symbol, Any}(:W => :red, :X => [2, 1], :Y => Bool[0, 0])
 Dict{Symbol, Any}(:W => :green, :X => [2, 1], :Y => Bool[0, 0])
 Dict{Symbol, Any}(:W => :blue, :X => [2, 1], :Y => Bool[0, 0])
 ⋮
 Dict{Symbol, Any}(:W => :blue, :X => [2, 1], :Y => Bool[0, 1])
 Dict{Symbol, Any}(:W => :red, :X => [1, 2], :Y => Bool[1, 1])
 Dict{Symbol, Any}(:W => :green, :X => [1, 2], :Y => Bool[1, 1])
 Dict{Symbol, Any}(:W => :blue, :X => [1, 2], :Y => Bool[1, 1])
 Dict{Symbol, Any}(:W => :red, :X => [2, 1], :Y => Bool[1, 1])
 Dict{Symbol, Any}(:W => :green, :X => [2, 1], :Y => Bool[1, 1])
 Dict{Symbol, Any}(:W => :blue, :X => [2, 1], :Y => Bool[1, 1])
source

Miscellaneous

SearchSpaces.cardinalityFunction
cardinality(searchspace)

Cardinality of the search space.

Example

julia> cardinality(PermutationSpace(5))
120

julia> cardinality(BoxConstrainedSpace(lb = zeros(2), ub = ones(2)))
Inf

julia> cardinality(BoxConstrainedSpace(lb = zeros(Int, 2), ub = ones(Int,2)))
4

julia> mixed = MixedSpace(
                          :W => CategorySpace([:red, :green, :blue]),
                          :X => PermutationSpace(3),
                          :Y => BitArraySpace(3),
                         );

julia> cardinality(mixed)
144
source
SearchSpaces.BitArraySpaceMethod
BitArraySpace(;dim)

Define a search space delimited by bit arrays.

Example

julia> space = BitArraySpace(4)
BitArraySpace(4)

julia> rand(space, 7)
7-element Vector{Vector{Bool}}:
 [0, 1, 1, 0]
 [0, 0, 0, 1]
 [1, 1, 1, 0]
 [0, 0, 0, 1]
 [0, 1, 0, 1]
 [1, 1, 1, 0]
 [1, 0, 0, 0]
source
SearchSpaces.BoxConstrainedSpaceMethod
BoxConstrainedSpace(;lb, ub, rigid=true)

Define a search space delimited by box constraints.

Example

julia> space = BoxConstrainedSpace(lb = zeros(Int, 5), ub = ones(Int, 5))
BoxConstrainedSpace{Int64}([0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], 5, true)

julia> cardinality(space)
32
source
SearchSpaces.CombinationSpaceMethod
CombinationSpace(values; k)
CombinationSpace(k)

Define a search space defined by the combinations (with replacement) of size k.

Example

julia> space = CombinationSpace(3)
CombinationSpace{UnitRange{Int64}}(1:3, 3)

julia> rand(space)
3-element Vector{Int64}:
 1
 1
 2

julia> rand(space,7)
7-element Vector{Vector{Int64}}:
 [1, 1, 1]
 [2, 1, 1]
 [2, 2, 1]
 [2, 3, 3]
 [1, 3, 1]
 [2, 1, 2]
 [2, 3, 1]

julia> rand(CombinationSpace([:apple, :orange, :onion, :garlic]))
4-element Vector{Symbol}:
 :apple
 :orange
 :orange
 :apple
source
SearchSpaces.MixedSpaceMethod
MixedSpace([itr])

Construct a search space.

Example

julia> space = MixedSpace( :X => BoxConstrainedSpace(lb = [-1.0, -3.0], ub = [10.0, 10.0]),
                          :Y => PermutationSpace(10),
                          :Z => BitArraySpace(dim = 10)
                          ) 
MixedSpace defined by 3 subspaces:
X => BoxConstrainedSpace{Float64}([-1.0, -3.0], [10.0, 10.0], [11.0, 13.0], 2, true)
Y => PermutationSpace{Vector{Int64}}([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10)
Z => BitArraySpace(10)


julia> rand(space)
Dict{Symbol, Vector} with 3 entries:
  :Z => Bool[0, 1, 0, 0, 0, 0, 0, 1, 1, 0]
  :X => [0.367973, 4.62101]
  :Y => [4, 3, 9, 1, 7, 2, 10, 8, 5, 6]

See also ×

source
SearchSpaces.PermutationSpaceMethod
PermutationSpace(values; k)
PermutationSpace(k)

Define a search space defined by permuting the values of size k (k-permutations).

julia> space = PermutationSpace([:red, :green, :blue])
PermutationSpace{Vector{Symbol}}([:red, :green, :blue], 3)

julia> rand(space, 5)
5-element Vector{Vector{Symbol}}:
 [:blue, :green, :red]
 [:red, :blue, :green]
 [:blue, :green, :red]
 [:green, :blue, :red]
 [:red, :blue, :green]

julia> GridSampler(PermutationSpace(3)) |> collect
6-element Vector{Any}:
 [1, 2, 3]
 [1, 3, 2]
 [2, 1, 3]
 [2, 3, 1]
 [3, 1, 2]
 [3, 2, 1]
source
Base.inMethod
in(item, searchspace) -> Bool

Determine whether an item is in the given searchspace.

source
Base.randMethod
rand([rng=GLOBAL_RNG], searchspace, [d])

Pick a random element or array of random elements from the search space specified by searchspace.

Examples

julia> searchspace = BoxConstrainedSpace(lb=[-10, 1, 100], ub = [10, 2, 1000]);

julia> rand(searchspace)
3-element Vector{Int64}:
   1
   1
 606

julia> rand(searchspace, 3)
3-element Vector{Vector{Int64}}:
 [0, 1, 440]
 [9, 1, 897]
 [3, 2, 498]

Another example using MixedSpace:

julia> mixed = MixedSpace(
                          :W => CategorySpace([:red, :green, :blue]),
                          :X => PermutationSpace(3),
                          :Y => BitArrays(3),
                          :Z => BoxConstrainedSpace(lb = zeros(2), ub = ones(2))
                         );

julia> rand(mixed)
Dict{Symbol, Any} with 4 entries:
  :Z => [0.775912, 0.467882]
  :W => :red
  :X => [3, 1, 2]
  :Y => Bool[1, 0, 1]
source
SearchSpaces.:..Method
..(a, b)

Define a interval between a and b (inclusive).

Example

julia> my_interval = (-π..π)

julia> rand(my_interval, 5)
5-element Vector{Float64}:
 0.5111482297554093
 1.1984728844571544
 1.3279941255812906
 2.3429444282250502
 3.0495310142685526

See also BoxConstrainedSpace

source
SearchSpaces.:×Method
A × B

Return the mixed space using Cartesian product.

Example

julia> bounds = BoxConstrainedSpace(lb = zeros(Int, 5), ub = ones(Int, 5));

julia> permutations = PermutationSpace([:red, :green, :blue]);

julia> bits = BitArraySpace(3);

julia> mixed = bounds × permutations × bits
MixedSpace defined by 3 subspaces:
S3 => BitArraySpace(3)
S2 => PermutationSpace{Vector{Symbol}}([:red, :green, :blue], 3)
S1 => BoxConstrainedSpace{Int64}([0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], 5, true)

julia> cardinality(mixed)
1536

julia> rand(mixed)
Dict{Symbol, Vector} with 3 entries:
  :S2 => [:red, :blue, :green]
  :S1 => [0, 1, 0, 0, 1]
  :S3 => Bool[1, 1, 0]
source
SearchSpaces.CategorySpaceMethod
CategorySpace(categories)

Define a search space given by the provided categories (Vector).

Example

julia> space = CategorySpace([:soft, :medium, :high]);

julia> rand(space)
:soft

julia> cardinality(space)
3
source
SearchSpaces.cardinalityMethod
cardinality(searchspace)

Cardinality of the search space.

Example

julia> cardinality(PermutationSpace(5))
120

julia> cardinality(BoxConstrainedSpace(lb = zeros(2), ub = ones(2)))
Inf

julia> cardinality(BoxConstrainedSpace(lb = zeros(Int, 2), ub = ones(Int,2)))
4

julia> mixed = MixedSpace(
                          :W => CategorySpace([:red, :green, :blue]),
                          :X => PermutationSpace(3),
                          :Y => BitArraySpace(3),
                         );

julia> cardinality(mixed)
144
source