Visualization

Solving ZDT6 using SMS-EMOA in Julia

Presenting the results using fancy plots is an important part of solving optimization problems. In this part, we use the Plots.jl package which can be installed via de Pkg prompt within Julia:

Type ] and then:

pkg> add Plots

Or:

julia> import Pkg; Pkg.add("Plots")

Once Plots is installed on your Julia distribution, you will be able to reproduce the following examples.

Assume you want to solve the following minimization problem.

Rastrigin Surface

Minimize:

\[f(x) = 10D + \sum_{i=1}^{D} x_i^2 - 10\cos(2\pi x_i)\]

where $x\in[-5, 5]^{D}$, i.e., $-5 \leq x_i \leq 5$ for $i=1,\ldots,D$. $D$ is the dimension number, assume $D=10$.

Population Distribution

Let's solve the above optimization problem and plot the resulting population (projecting two specific dimensions).

using Metaheuristics
using Plots
gr()


# objective function
f(x) = 10length(x) + sum( x.^2 - 10cos.(2π*x)  )

# number of variables (dimension)
D = 10

# bounds
bounds = [-5ones(D) 5ones(D)]'

# Common options
options = Options(seed=1)

# Optimizing
result = optimize(f, bounds, ECA(options=options))

# positions in matrix NxD 
X = positions(result)

scatter(X[:,1], X[:,2], label="Population")

x = minimizer(result)
scatter!(x[1:1], x[2:2], label="Best solution")


# (optional) save figure
savefig("final-population.png")

Final Population

If your optimization problem is scalable, then you also can plot level curves. In this case, let's assume that $D=2$.

using Metaheuristics
using Plots
gr()


# objective function
f(x) = 10length(x) + sum( x.^2 - 10cos.(2π*x)  )

# number of variables (dimension)
D = 2

# bounds
bounds = [-5ones(D) 5ones(D)]'

# Common options
options = Options(seed=1)

# Optimizing
result = optimize(f, bounds, ECA(options=options))

# positions in matrix NxD 
X = positions(result)

xy = range(-5, 5, length=100)
contour(xy, xy, (a,b) -> f([a, b]))

scatter!(X[:,1], X[:,2], label="Population")

x = minimizer(result)
scatter!(x[1:1], x[2:2], label="Best solution")


# (optional) save figure
savefig("final-population-contour.png")

Final Population

Objective Function Values

Metaheuristics.jl implements some methods to obtain the objective function values (fitness) from the solutions in the resulting population. One of the most useful methods is fvals. In this case, let's use PSO.

using Metaheuristics
using Plots
gr()


# objective function
f(x) = 10length(x) + sum( x.^2 - 10cos.(2π*x)  )

# number of variables (dimension)
D = 10

# bounds
bounds = [-5ones(D) 5ones(D)]'

# Common options
options = Options(seed=1)

# Optimizing
result = optimize(f, bounds, PSO(options=options))

f_values = fvals(result)
plot(f_values)

# (optional) save figure
savefig("fvals.png")

Final Population

Convergence

Sometimes, it is useful to plot the convergence plot at the end of the optimization process. To do that, it is necessary to set store_convergence = true in Options. Metaheuristics implements a method called convergence.

using Metaheuristics
using Plots
gr()


# objective function
f(x) = 10length(x) + sum( x.^2 - 10cos.(2π*x)  )

# number of variables (dimension)
D = 10

# bounds
bounds = [-5ones(D) 5ones(D)]'

# Common options
options = Options(seed=1, store_convergence = true)

# Optimizing
result = optimize(f, bounds, ECA(options=options))

f_calls, best_f_value = convergence(result)

plot(xlabel="f calls", ylabel="fitness", title="Convergence")
plot!(f_calls, best_f_value, label="ECA")

# (optional) save figure
savefig("convergence.png")

Convergence

Animate convergence

Also, you can plot the population and convergence in the same figure.

Single-Objective Problem

using Metaheuristics
using Plots
gr()


# objective function
f(x) = 10length(x) + sum( x.^2 - 10cos.(2π*x)  )

# number of variables (dimension)
D = 10

# bounds
bounds = [-5ones(D) 5ones(D)]'

# Common options
options = Options(seed=1, store_convergence = true)

# Optimizing
result = optimize(f, bounds, ECA(options=options))

f_calls, best_f_value = convergence(result)

animation = @animate for i in 1:length(result.convergence)
    l = @layout [a b]
    p = plot( layout=l)

    X = positions(result.convergence[i])
    scatter!(p[1], X[:,1], X[:,2], label="", xlim=(-5, 5), ylim=(-5,5), title="Population")
    x = minimizer(result.convergence[i])
    scatter!(p[1], x[1:1], x[2:2], label="")

    # convergence
    plot!(p[2], xlabel="Generation", ylabel="fitness", title="Gen: $i")
    plot!(p[2], 1:length(best_f_value), best_f_value, label=false)
    plot!(p[2], 1:i, best_f_value[1:i], lw=3, label=false)
    x = minimizer(result.convergence[i])
    scatter!(p[2], [i], [minimum(result.convergence[i])], label=false)
end

# save in different formats
# gif(animation, "anim-convergence.gif", fps=30)
mp4(animation, "anim-convergence.mp4", fps=30)

Multi-Objective Problem

import Metaheuristics: optimize, SMS_EMOA, TestProblems, pareto_front, Options
import Metaheuristics.PerformanceIndicators: Δₚ
using Plots; gr()

# get test function
f, bounds, pf = TestProblems.ZDT6();

# optimize using SMS-EMOA
result = optimize(f, bounds, SMS_EMOA(N=70,options=Options(iterations=500,seed=0, store_convergence=true)))

# true pareto front
B = pareto_front(pf)
# error to the true front
err = [ Δₚ(r.population, pf) for r in result.convergence]
# generate plots
a = @animate for i in 1:5:length(result.convergence)
    A = pareto_front(result.convergence[i])

    p = plot(B[:, 1], B[:,2], label="True Pareto Front", lw=2,layout=(1,2), size=(850, 400))
    scatter!(p[1], A[:, 1], A[:,2], label="SMS-EMOA", markersize=4, color=:black, title="ZDT6")
    plot!(p[2], eachindex(err), err, ylabel="Δₚ", legend=false)
    plot!(p[2], 1:i, err[1:i], title="Generation $i")
    scatter!(p[2], [i], err[i:i])
end

# save animation
gif(a, "ZDT6.gif", fps=20)

Soving ZDT6 using SMS-EMOA in Julia

Pareto Front

import Metaheuristics: optimize, NSGA2, TestProblems, pareto_front, Options
using Plots; gr()

f, bounds, solutions = TestProblems.ZDT3();

result = optimize(f, bounds, NSGA2(options=Options(seed=0)))

A = pareto_front(result)
B = pareto_front(solutions)

scatter(A[:, 1], A[:,2], label="NSGA-II")
plot!(B[:, 1], B[:,2], label="Parento Front", lw=2)
savefig("pareto.png")

Final Population

Live Plotting

The optimize function has a keyword parameter named logger that contains a function pointer. Such function will receive the State at the end of each iteration in the main optimization loop.

import Metaheuristics: optimize, NSGA2, TestProblems, pareto_front, Options, fvals
using Plots; gr()

f, bounds, solutions = TestProblems.ZDT3();
pf = pareto_front(solutions)

logger(st) = begin
    A = fvals(st)
    scatter(A[:, 1], A[:,2], label="NSGA-II", title="Gen: $(st.iteration)")
    plot!(pf[:, 1], pf[:,2], label="Parento Front", lw=2)
    gui()
    sleep(0.1)
end

result = optimize(f, bounds, NSGA2(options=Options(seed=0)), logger=logger)

Visualizing Constraint Violations

For constrained optimization, visualize how constraint violations decrease over time:

using Metaheuristics
using Plots
gr()

# Constrained problem
function constrained_f(x)
    fx = sum(x)
    gx = [sum(x.^2) + 1.0, x[1]^2 - 2]  # two inequality constraints
    hx = [0.0]
    return fx, gx, hx
end

bounds = boxconstraints(lb = -5ones(5), ub = 5ones(5))
options = Options(store_convergence=true, seed=1)

result = optimize(constrained_f, bounds, ECA(options=options))

# Extract constraint violations over time
violations = Float64[]
for state in result.convergence
    # Get best solution's constraint violation
    best = state.best_sol
    total_violation = sum(max.(0, best.g)) + sum(abs.(best.h))
    push!(violations, total_violation)
end

# Plot
plot(1:length(violations), violations, 
     xlabel="Generation", 
     ylabel="Total Constraint Violation",
     title="Constraint Satisfaction Progress",
     xscale=:log10,
     legend=false)
savefig("constraint_progress.png")

Comparing Multiple Algorithms

Visualize convergence of multiple algorithms on the same problem:

using Metaheuristics
using Plots
gr()

# Define test problem
f(x) = sum(x.^2 .- 10cos.(2π*x)) .+ 10length(x)
bounds = boxconstraints(lb = -5ones(10), ub = 5ones(10))

# Test multiple algorithms
algorithms = [
    ("ECA", ECA),
    ("DE", DE),
    ("PSO", PSO)
]

# Run and collect convergence
p = plot(xlabel="Function Evaluations", ylabel="Best Fitness", 
         title="Algorithm Comparison", yscale=:log10)

for (name, algo) in algorithms
    options = Options(store_convergence=true, seed=1)
    algo_with_opts = algo(;options=options)
    
    result = optimize(f, bounds, algo_with_opts)
    f_calls, best_f = convergence(result)
    
    plot!(p, f_calls, best_f, label=name, lw=2)
end

savefig(p, "algorithm_comparison.png")

3D Pareto Front Visualization

For three-objective problems:

using Metaheuristics
using Plots
gr()

# Three-objective problem (DTLZ2)
f, bounds, pf = Metaheuristics.TestProblems.DTLZ2(3)  # 3 objectives

result = optimize(f, bounds, NSGA3(options=Options(seed=0)))

# Get Pareto front
A = pareto_front(result)

# 3D scatter plot
scatter(A[:,1], A[:,2], A[:,3],
        xlabel="f₁", ylabel="f₂", zlabel="f₃",
        title="3D Pareto Front - DTLZ2",
        label="Approximation",
        markersize=3,
        camera=(135, 45))

savefig("pareto_3d.png")

Constraint Violation Heatmap

Visualize constraint violations across 2D decision space:

using Metaheuristics
using Plots
gr()

# 2D constrained problem
function f_2d(x)
    fx = sum(x.^2)
    gx = [x[1]^2 + x[2]^2 - 1]  # circle constraint
    hx = [0.0]
    return fx, gx, hx
end

# Create grid for visualization
x1_range = range(-2, 2, length=100)
x2_range = range(-2, 2, length=100)

# Calculate constraint violations
violation_map = zeros(length(x2_range), length(x1_range))
for (i, x2) in enumerate(x2_range)
    for (j, x1) in enumerate(x1_range)
        _, g, _ = f_2d([x1, x2])
        violation_map[i, j] = max(0, g[1])  # only positive violations
    end
end

# Plot
heatmap(x1_range, x2_range, violation_map,
        xlabel="x₁", ylabel="x₂",
        title="Constraint Violation Map",
        color=:viridis)

# Optimize and overlay solution
result = optimize(f_2d, boxconstraints(lb=[-2,-2], ub=[2,2]), ECA())
x_sol = minimizer(result)
scatter!([x_sol[1]], [x_sol[2]], 
         label="Solution", 
         color=:red, 
         markersize=10,
         markershape=:star)

savefig("constraint_heatmap.png")

Interactive Plotting with Makie

For interactive visualizations, consider using Makie.jl:

# Note: Install GLMakie first
# using Pkg; Pkg.add("GLMakie")

using GLMakie
using Metaheuristics

# Optimize
f, bounds, true_pf = Metaheuristics.TestProblems.ZDT1()
result = optimize(f, bounds, NSGA2())

# Get fronts
approx_pf = pareto_front(result)
true_front = pareto_front(true_pf)

# Create interactive plot
fig = Figure(resolution=(800, 600))
ax = Axis(fig[1, 1], xlabel="f₁", ylabel="f₂", title="Interactive Pareto Front")

# Plot
scatter!(ax, true_front[:, 1], true_front[:, 2], 
         label="True Front", color=:blue, markersize=5)
scatter!(ax, approx_pf[:, 1], approx_pf[:, 2], 
         label="Approximation", color=:red, markersize=8)

axislegend(ax, position=:rt)
display(fig)

Interactive plots allow you to:

  • Zoom and pan
  • Hover for values
  • Rotate 3D plots
  • Export high-quality figures

Decision Space Animation

Animate how population explores decision space:

using Metaheuristics
using Plots
gr()

# 2D optimization problem
f(x) = (x[1] - 1)^2 + (x[2] + 1)^2
bounds = boxconstraints(lb = [-3.0, -3.0], ub = [3.0, 3.0])
options = Options(store_convergence=true, iterations=50, seed=1)

result = optimize(f, bounds, PSO(options=options))

# Create contour background
x_grid = range(-3, 3, length=50)
y_grid = range(-3, 3, length=50)
z_grid = [f([x, y]) for y in y_grid, x in x_grid]

# Animate
anim = @animate for (i, state) in enumerate(result.convergence)
    contour(x_grid, y_grid, z_grid, levels=20, 
            xlabel="x₁", ylabel="x₂", 
            title="Generation $i",
            colorbar=true)
    
    # Plot population
    X = positions(state)
    scatter!(X[:, 1], X[:, 2], 
             label="Population", 
             color=:red, 
             markersize=4)
    
    # Plot best
    x_best = minimizer(state)
    scatter!([x_best[1]], [x_best[2]], 
             label="Best", 
             color=:yellow, 
             markersize=10,
             markershape=:star)
end

gif(anim, "decision_space_animation.gif", fps=10)