References
- [1]
-
J.-A. Mejía-de-Dios and E. Mezura-Montes. A New Evolutionary Optimization Method Based on Center of Mass. In: Decision Science in Action: Theory and Applications of Modern Decision Analytic Optimisation, editors, Kusum Deep, Madhu Jain and Said Salhi, 65–74. Springer Singapore, Singapore (2019).
- [2]
- [3]
-
J. Kennedy and R. Eberhart. Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks, 1942–1948 (1995).
- [4]
-
D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization 39, 459–471 (2007).
- [5]
-
H. Li and Q. Zhang. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE transactions on evolutionary computation 13, 284–302 (2008).
- [6]
-
S. Mirjalili and A. H. Gandomi. Chaotic gravitational constants for the gravitational search algorithm. Applied soft computing 53, 407–419 (2017).
- [7]
-
P. J. Van L. and E. Aarts. Simulated annealing. In: Simulated annealing: Theory and applications, editors, 7–15. Springer (1987).
- [8]
-
S. Mirjalili and A. Lewis. The whale optimization algorithm. Advances in engineering software 95, 51–67 (2016).
- [9]
-
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation 6, 182–197 (2002).
- [10]
-
K. Deb and H. Jain. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 18, 577-601 (2014).
- [11]
-
M. Emmerich, N. Beume and B. Naujoks. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In: Lecture Notes in Computer Science, editors, 62–76. Springer Berlin Heidelberg (2005).
- [12]
-
E. Zitzler, M. Laumanns and L. Thiele. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 103 (2001).
- [13]
-
M. H. Satman and E. Akadal. Machine Coded Compact Genetic Algorithms for Real Parameter Optimization Problems. Alphanumeric Journal 8, 43–58 (2020).
- [14]
-
Y. Tian, T. Zhang, J. Xiao, X. Zhang and Y. Jin. A Coevolutionary Framework for Constrained Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation 25, 102-116 (2021).
- [15]
-
T. Takahama and S. Sakai. Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites. In: 2006 IEEE International Conference on Evolutionary Computation, 1-8 (2006).
- [16]
-
J. F. Gon{ç}alves and M. G. Resende. Biased random-key genetic algorithms for~combinatorial optimization. Journal of Heuristics 17, 487–525 (2010).
- [17]
-
E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca and V. da Fonseca. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7, 117-132 (2003).
- [18]
-
M. H. Satman, B. F. Yıldırım and E. Kuruca. JMcDM: A Julia package for multiple-criteria decision-making tools. Journal of Open Source Software 6, 3430 (2021).
- [19]
-
S. de-la-Cruz-Martínez, J. Mejía-de-Dios and M.-M. E. Efficient Archiving Method for Handling Preferences in Constrained Multiobjective Evolutionary Optimization. Handbook on Decision Making: Trends and Challenges in Intelligent Decision Support Systems, 1–30, Springer-Verlag (2022).
- [20]