Multi-Criteria Decision-Making
A set of Multi-Criteria Decision Making (MCDM) methods is available in Metaheuristics.jl
.
Here, minimization is always assumed.
Firstly, it is recommended to read the details of the following two functions.
Metaheuristics.decisionmaking
— Functiondecisionmaking(fs, w, method)
Perform selected method
for a given fs
and weight vector(s) and return the indices indicating the best alternative(s). Here, fs
can be a set of non-dominated solutions (population) or a State
.
Metaheuristics.best_alternative
— Functionbest_alternative(res, w, method)
Perform McDM using results from metaheuristic and return best alternative in res.population
.
Example
julia> f, bounds, _ = Metaheuristics.TestProblems.ZDT1();
julia> res = optimize(f, bounds, NSGA2());
julia> best_sol = best_alternative(res, [0.5, 0.5], TopsisMethod())
(f = [0.32301132058506055, 0.43208538139854685], g = [0.0], h = [0.0], x = [3.230e-01, 1.919e-04, …, 1.353e-04])
best_alternative(population, w, method)
Perform method
and return the best alternative(s) in population
.
Currently available methods are listed in the following table.
Method | Strategies | Preferences | Dependency |
---|---|---|---|
CompromiseProgramming | S | W/D | |
ROIArchiving | M | D | |
ArasMethod | S | W | JMcDM |
CocosoMethod | S | W | JMcDM |
CodasMethod | S | W | JMcDM |
CoprasMethod | S | W | JMcDM |
EdasMethod | S | W | JMcDM |
ElectreMethod | M | W | JMcDM |
GreyMethod | S | W | JMcDM |
MabacMethod | S | W | JMcDM |
MaircaMethod | S | W | JMcDM |
MooraMethod | S | W | JMcDM |
SawMethod | S | W | JMcDM |
TopsisMethod | S | W | JMcDM |
VikorMethod | S | W | JMcDM |
WPMMethod | S | W | JMcDM |
WaspasMethod | S | W | JMcDM |
MarcosMethod | S | W | JMcDM |
ROVMethod | S | W | JMcDM |
A Method can suggest Single (S) or Multiple (M) Strategies. Also, Methods can represent Preferences by using weight vectors (W), reference directions (D) or reference points (P).
JMcDM
JMcDM is a package for MCDM developed by [18]. Many methods have been implemented there, and many of them have been interfaced here.
The main method to use JMcDM within Metaheuristics is described as follows.
mcdm(data, w, method)
Perform selected method
for a given data
and weight vector w
. Here, data
can be a set of non-dominated solutions (population), a State
or a decision Matrix
.
Also, method
can be selected from JMcDM package.
Supported MCDM methods:
ArasMethod
CocosoMethod
CodasMethod
CoprasMethod
EdasMethod
ElectreMethod
GreyMethod
MabacMethod
MaircaMethod
MooraMethod
SawMethod
TopsisMethod
(default method)VikorMethod
WPMMethod
WaspasMethod
MarcosMethod
ROVMethod
See the JMcDM documentation for more details about the methods.
Example 1:
Performing MCDM using a population.
julia> _, _, population = Metaheuristics.TestProblems.ZDT1();
julia> dm = mcdm(population, [0.5, 0.5], TopsisMethod());
julia> population[dm.bestIndex]
(f = [0.5353535353535354, 0.2683214262030523], g = [0.0], h = [0.0], x = [5.354e-01, 0.000e+00, …, 0.000e+00])
Example 2:
Performing MCDM using results from metaheuristic.
julia> f, bounds, _ = Metaheuristics.TestProblems.ZDT1();
julia> res = optimize(f, bounds, NSGA2());
julia> dm = mcdm(res, [0.5, 0.5], TopsisMethod());
julia> res.population[dm.bestIndex]
(f = [0.32301132058506055, 0.43208538139854685], g = [0.0], h = [0.0], x = [3.230e-01, 1.919e-04, …, 1.353e-04])
Selecting best alternative
best_alternative(res, w, method)
Perform McDM using results from metaheuristic and return the best alternative in res.population
.
julia> f, bounds, _ = Metaheuristics.TestProblems.ZDT1();
julia> res = optimize(f, bounds, NSGA2());
julia> best_sol = best_alternative(res, [0.5, 0.5], TopsisMethod())
(f = [0.32301132058506055, 0.43208538139854685], g = [0.0], h = [0.0], x = [3.230e-01, 1.919e-04, …, 1.353e-04])
Region of Interest Archiving
ROIArchiving
uses a set of reference directions to determine the areas of interest of the Pareto Front and a set of thresholds associated with each component from the reference directions, which determine the boundaries of the area of interest being covered. See [19].
Metaheuristics.ROIArchiving
— TypeROIArchiving(δ_w)
It can be used as a posteriori decision-making criteria applied to the Pareto front found by a metaheuristic when solved a constrained multi-objective problem.
ROIArchiving
can handle multiple weight points and corresponding thresholds δ_w
. Note 0 <= δ_w[i] <= 1
indicates the size of region of interest, e.g., δ_w[i] = 0.51
means that you want 51% of the Pareto front solutions close to w[i]
.
Example
julia> f, bounds, pf = Metaheuristics.TestProblems.ZDT1();
julia> res = optimize(f, bounds, NSGA2()); # find Pareto front
julia> ws = [0.1 0.9; 0.9 0.1]; # weight points by rows.
julia> # 10% of solutions closest to the corresponding w[i]
julia> method = ROIArchiving([0.1, 0.1]); # 10% of solutions closest to the corresponding w[i].
julia> subpop = best_alternative(res, ws, method)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀F space⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
0.9 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f₂ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠁⠠⠄⠀⠀⠀⠀⠀│
0 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠂⠀⠀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀f₁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
julia> res.population # all solutions
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀F space⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
┌────────────────────────────────────────┐
1.1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⡃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠈⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠈⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
f₂ │⠀⠀⠀⠀⠀⠀⠈⠓⢢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⠆⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠐⠠⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠂⠢⠄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠰⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│
│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠑⠒⠄⢀⡀⠀⠀⠀⠀⠀│
0 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠒⠤⠄⣀│
└────────────────────────────────────────┘
⠀0⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀f₁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Compromise Programming
More information about Compromise Programming can be found in [20]
Metaheuristics.CompromiseProgramming
— TypeCompromiseProgramming(scalarizing)
Perform compromise programming by using the scalarizing
function provided. Current implemented scalarizing function are
WeightedSum
Tchebysheff
AchievementScalarization
.
Example
julia> f, bounds, pf = Metaheuristics.TestProblems.ZDT1();
julia> res = optimize(f, bounds, NSGA2());
julia> w = [0.5, 0.5];
julia> sol = best_alternative(res, w, CompromiseProgramming(Tchebysheff()))
(f = [0.38493217206706115, 0.38037042164979956], g = [0.0], h = [0.0], x = [3.849e-01, 7.731e-06, …, 2.362e-07])
julia> sol = best_alternative(res, w, CompromiseProgramming(WeightedSum()))
(f = [0.2546059308425166, 0.4958366970021401], g = [0.0], h = [0.0], x = [2.546e-01, 2.929e-06, …, 2.224e-07])
julia> sol = best_alternative(res, w, CompromiseProgramming(AchievementScalarization()))
(f = [0.38493217206706115, 0.38037042164979956], g = [0.0], h = [0.0], x = [3.849e-01, 7.731e-06, …, 2.362e-07])
julia> idx = decisionmaking(res, w, CompromiseProgramming(Tchebysheff()))
3