API References

HyperTuning.MedianPrunerType
MedianPruner(;start_after, prune_after)
  • start_after: Start up pruner after this number (of completed trials).
  • prune_after: Prune a trial after this value (considering the median criteria).
  • median_vals: median values reported for each instance.
source
HyperTuning.ScenarioMethod
Scenario(;
        parameters...,
        sampler    = default_sampler(),
        pruner     = default_pruner(),
        instances  = [1],
        max_trials = :auto,
        max_evals  = :auto,
        max_time   = :auto,
        verbose    = false,
        batch_size = max(nprocs(), Sys.CPU_THREADS),
    )

Define an Scenario with parameters, and budget.

  • sampler sampler to be used.
  • pruner pruner to reduce computational cost.
  • instances array (iterator) containing the problem instances.
  • max_trials maximum number of trials to be evaluated on optimize.
  • max_evals maximum number of function evaluations.
  • max_time maximum execution time on optimize.
  • verbose show message during the optimization.
  • batch_size number of trials evaluated for each instance for each iteration.
source
HyperTuning.optimize!Method
optimize!(f, scenario)

Perform an iteration of the optimization process.

When this function is called, scenario.batch_size trials are sampled and evaluated, then update the sampler and pruner.

See also optimize

source
HyperTuning.optimizeMethod
optimize(f, scenario)

Optimize f on provided scenario while the budget is not exceeded (limited by maxtrials, maxevals, etc).

See also optimize!

source
HyperTuning.save_trials!Method
save_trials!(ungrouped_trials, scenario)

Save evaluated trials into scenario history, then update best trial found so far. Also, report values to the sampler.

source
HyperTuning.top_parametersMethod
top_parameters(scenario; ignore_pruned)

Return an array of trade-off trials (regarding success, mean objective value, time, etc).

source