API References
HyperTuning.BCAPSamplerHyperTuning.BudgetExceededHyperTuning.GridSamplerHyperTuning.GroupedTrialHyperTuning.MedianPrunerHyperTuning.NoMoreTrialsHyperTuning.RandomSamplerHyperTuning.ScenarioHyperTuning.StatusHyperTuningHyperTuning.:..HyperTuning.all_instances_succeededHyperTuning.best_parametersHyperTuning.budget_exceededHyperTuning.default_rng_htHyperTuning.get_convergenceHyperTuning.get_instanceHyperTuning.historyHyperTuning.optimizeHyperTuning.optimize!HyperTuning.parametersHyperTuning.report_success!HyperTuning.report_value!HyperTuning.save_trials!HyperTuning.should_pruneHyperTuning.top_parametersHyperTuning.update_best_trial!HyperTuning.@suggest
HyperTuning.BCAPSampler — MethodBCAPSampler(searchspace;rng)Define a iterator for the BCAP sampler.
HyperTuning.BudgetExceeded — TypeBudgetExceeded([msg])Used to inform if budget has been exceeded.
HyperTuning.GridSampler — MethodGridSampler(;npartitions)Define a iterator for the grid sampler.
HyperTuning.GroupedTrial — TypeGroupedTrialTrials grouped per instance.
HyperTuning.MedianPruner — TypeMedianPruner(;start_after, prune_after)- start_after: Start up pruner after this number (of completed trials).
- prune_after: Prune a trial after this value (considering the median criteria).
- median_vals: median values reported for each instance.
HyperTuning.NoMoreTrials — TypeNoMoreTrials()Used to inform that ampler refuses to suggest trials.
HyperTuning.RandomSampler — MethodRandomSampler(;seed, rng)Define a iterator for the random sampler.
HyperTuning.Scenario — MethodScenario(;
parameters...,
sampler = default_sampler(),
pruner = default_pruner(),
instances = [1],
max_trials = :auto,
max_evals = :auto,
max_time = :auto,
verbose = false,
batch_size = max(nprocs(), Sys.CPU_THREADS),
)Define an Scenario with parameters, and budget.
samplersampler to be used.prunerpruner to reduce computational cost.instancesarray (iterator) containing the problem instances.max_trialsmaximum number of trials to be evaluated onoptimize.max_evalsmaximum number of function evaluations.max_timemaximum execution time onoptimize.verboseshow message during the optimization.batch_sizenumber of trials evaluated for each instance for each iteration.
HyperTuning.StatusHyperTuning — TypeStatusHyperTuningCurrent status of the optimize process for scenario.
HyperTuning.:.. — MethodHyperTuning.all_instances_succeeded — Methodall_instances_succeeded(scenario)Check if all instances are successfully solved.
See also report_success
HyperTuning.best_parameters — Methodbest_parameters(scenario)Return best parameters saved in scenario.
HyperTuning.budget_exceeded — Methodbudget_exceeded(scenario)Check whether if budget is not exceeded.
HyperTuning.default_rng_ht — Functiondefault_rng_ht(seed)Default random number generator in HyperTuning.
HyperTuning.get_convergence — Methodget_convergence(scenario)Return vector of tuples containing the trial id and objective value.
HyperTuning.get_instance — Methodget_instance(trial)Get instance problem which trials has to be evaluated.
HyperTuning.history — Methodhistory(scenario)Return all evaluated trails.
HyperTuning.optimize! — Methodoptimize!(f, scenario)Perform an iteration of the optimization process.
When this function is called, scenario.batch_size trials are sampled and evaluated, then update the sampler and pruner.
See also optimize
HyperTuning.optimize — Methodoptimize(f, scenario)Optimize f on provided scenario while the budget is not exceeded (limited by maxtrials, maxevals, etc).
See also optimize!
HyperTuning.parameters — Methodparameters(hyperparameters...)
Define hyperparameters.
HyperTuning.report_success! — Methodreport_success!(trial)Report that the trial successfully solved the instance.
HyperTuning.report_value! — Methodreport_value!(trial, value)Report (to the pruner) evaluated value at trail.
HyperTuning.save_trials! — Methodsave_trials!(ungrouped_trials, scenario)Save evaluated trials into scenario history, then update best trial found so far. Also, report values to the sampler.
HyperTuning.should_prune — Methodshould_prune(trial)Check whether trial should be pruned.
HyperTuning.top_parameters — Methodtop_parameters(scenario; ignore_pruned)Return an array of trade-off trials (regarding success, mean objective value, time, etc).
HyperTuning.update_best_trial! — Methodupdate_best_trial!(scenario, trials)Update best trial found so far.
HyperTuning.@suggest — Macro@suggest x in trialReturn a value for x stored in the sampled trial.